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NOMENCLATURE

A

CM

Cp
y(z)
y[z(0)]
F[Z(O),e]
9.l.b.
HHC

J

,yz
,le
K

L

l.u.b.

M

N

P

Q

R

RAO

RO

Si

RTA

t

T

VCS

Wz

the square of a constraint bound

a coefficient in equation (2'6) which can either be identically equal to one for

nonperiodic cases, or equal to the required periodic function for periodic cases

scaling coefficient for the random increment matrix term in equation (2-3)

(CE = 0.001 for this study)

scaling coefficient for the random increment matrix term in equation (2-6). The

baseline value of CM selected for this study is 0.2000

scaling Coefficient for the random increment matrix term in equation (2-4)

the probability density function Z

the performance index, which is a scalar function of Z(O)

augmented performance index, which is a scalar function of Z(O) and e
greatest lower bound

higher harmonic control

scalar performance index

that part of the scalar performance index dependent on Z

that part of the scalar performance index dependent on 0

Kalman filter gain vector

number of aecelerometers us_ to measure the vibration (L 6 for this study)
least upper bound

principal dimension of the Them-vector equal to 6 for the local model and 7 for the

global model, also the number of inequality constraints

number of blades in the rotor system (N = 4 for this study)

covarianee of the T-Matrix row currently being identified, evaluated after the

measurement of the Z-Vector during the current cycle. The dimension is (M × M)
for the matrix and (M x M :,<2L) for the rank 3 tensor

covarianee of the j-th row of the forcing function part of the T-Matrix. The

dimension is (M x M) for the matrix and (M x M x 2L) for the rank 3 tensor

(I x 1) scalar covariance of the measurement noise

external limiting envelope bound for A0

external limiting envelope bound for 0

P/+ Qi- The dimension is (M x M) for the matrix and (M x M x 2L) for the
rank-3 tensor

Rotor Test Apparatus

time expressed in rotor revolutions

plant matrix, quasi-static transfer matrix, T-Matrix. The dimension is (2L x M)

(i.e., (2L x 6) for the local model and (2L x 7) for the global model)

j-th row of the T-Matrix (for j = 1, 2 .... ,2L), a row vector with dimension
(1 x M)

estimate of the T-Matrix

Vibration Control system

diagonal (M x M) weighting matrix for the quadratic Z-Vector metric

V



WAO

we

Z

diagonal (M x M) weighting matrix for the quadratic A0-Vector term in the

performance index

diagonal (M x M) weighting matrix for the quadratic Them-Vector term in the

performance index

a vector of the coefficients of the cosine and sine terms of the vibration output

vector, the actual helicopter vibration response Z-Vector defined by equation (2-5).

Z is a vector function of 0 and, correspondingly, is also written 2(0). The

dimension is (2L × 1)

measured helicopter vibration response Z-Vector defined by equation (2-6)

a a slack variable corresponding to an inequality constraint; a vector, Alpha-Vector,

whose elements are the slack variables

AO change=in 0 during one_volutionOf therotor (i.e., AO = 0i - Oi-1)

0 - Them/vect0r Whos-e-elements are the N--1. _e N, and theN + 1 h_onie cosine

and sine Fourier e_fficients of the blade-pi--tc_ control as defined in the rotating

system, and whose last element is identically equal to one for the global model.

The dimension is (M x 1) (i.e., (6 x 1) for the]ocal model and (7 x 1) for the

global model)

O augmented Them-Vector composed of the Theta-Vector and the Alpha-Vector

A adjoint coefficient, vector of adjoint coefficients,' a Lagrangfan multiplier, the adjoint

vector composedof La_gian multipliers; also a p_eter used to adjust the

magnitude of the stochastic term relative to the nonstochastic terms in the

performance index and control laws of the stochastic controllers

1., vector composed of uniform distribution random numbers E [0.0, 1.0]. I., has the
same dimension as the Z-Vector

matrix composed of uniform distribution random numbers E [0.0, 1.0]. _ has the
same dimension as the T-matrix

o- phase of the sinusoidal coefficient of the random term in equation (2-6) expressed in

............ a ngndimension _ fraction of_ a rotor revolution

7" period of the sinus0idal coefficient of the random term in equation (2-6) expressed

in rotor revolutions

_b equality constraint function, a vector composed of equality constraint functions

_b inequality constraint function, a vector composed of inequality constraint functions

T

-1

i

J
k

Superscripts

transpose of a matrix ..... ........

inverse ofamatrix 7: :? :: - = _::::_ :

the solution (e.g., the optimal) value of a variable

Subscripts

_ : -5:( sq2x_s5 =z -- : =

time point number (e.g., number of rotor revolutions)

T-Matrix row number (j = 1, 2, ..., 2L), also constraint function index

constraint function and slack variable index

z

=

vi



L

M

N

0

number of accelerometers used to measure the vibration (L = 6 for this study)

number of inequality constraints

number of blades in the rotor system (N = 4 for this study)

uncontrolled condition (i.e., evaluated for a zero Them-Vector)
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SUMMARY

A comparison was made of the applicability and suitability of the deterministic controller, the cau-

tious controller, and the dual controller for the reduction of helicopter vibration by using higher harmonic

blade pitch control. A randomly generated linear plant model was assumed and the performance index

was defined to be a quadratic output metric of this linear plant. A computer code, designed to check out

and evaluate these controllers, was implemented and used to accomplish this comparison. The effects of

random measurement noise, the initial estimate of the plant matrix, and the plant matrix propagation rate

were determined for each of the controllers. With few exceptions, the deterministic controller yielded

the greatest vibration reduction (as characterized by the quadratic output metric) and operated with the

greatest reliability. Theoretical limitations of these controllers were defined and appropriate candidate

alternative methods, including one method particularly suitable to the cockpit, were identified.

1 INTRODUCTION

The reduction of rotorcraft vibration and loads is an important means to extend the useful life of

the vehicle and to improve its ride quality. Although vibration reduction can be accomplished by using

passive dampers and/or tuned masses, active control has the potential to reduce vibration throughout a

wider flight regime while requiring less additional weight to the aircraft than would be required when

employing either the passive dampers or the tuned masses.

Davis fief. 1) investigated the use of the deterministic, cautious, and dual controllers to provide

higher harmonic blade pitch control for the four-bladed H-34 rotor mounted on NASA's Rotor Test

Apparatus (RTA) (ref. 2). For this investigation, Davis employed a detailed, nonlinear, aeroelastic

helicopter vibration simulation, the G400 computer code (a detailed nonlinear aeroelastic helicopter

vibration simulation, United Technologies Research Center), to determine the RTA vibration response to

the higher harmonic blade pitch control defined by the controller being investigated. Davis concluded

that the deterministic, cautious, and dual controllers provided excellent performance over a wide range

of steady flight conditions for both the global model system and the local model system, and that

there is no apparent advantage to using any particular subject controller or any particular model system
for the conditions which were considered. Davis further concluded thatthese controllers exhibited

good performance characteristics, when "properly tuned," for transient cases which result from sudden

changes in thrust. The subject controllers employed two suboptimal methods, internal limiting and

external limiting, to impose constraints on the control vector. Davis concluded that of the two constraint

methods, internal limiting worked best for the deterministic controller.

This document discusses a comparison of the aforementioned controllers for a more general ap-

plication than that considered by Davis; a randomly generated linear plant was employed rather than

Davis's detailed helicopter simulation. Use of a randomly generated linear plant provides a convenient

and relatively efficient means to evaluate the effectiveness as well as the robustness of the controller

being considered. Care must be exercised, however, in the selection of the governing parameters for

the random models which are employed by this scheme.



2 TECHNICAL CONSIDERA_ONS

Helicopter vibration is, in general, a highly nonlinear phenomenon. As in Davis's investigation

(ref. 1), it is assumed in this study that the relationship between the helicopter's vibration response (the

Z-Vector) and its higher harmonic blade pitch control (the Them-Vector) can be adequately modeled

with a quasi-static transfer matrix (the T-Matrix) that linearly relates the two over the feasible range of

control (i.e., the range of interest). This transfer matrix is the helicopter plant matrix for this assumed

linear model. The objective of the subject controllers of this investigation (i.e., the deterministic, the

cautious, and the dual controllers) is to minimize the helicopter's vibration response=along_c state

trajectory by defining the optimal control vector, which is, in general, subject tO Constraints. In this

case, the state trajectory is the time propagation of the T-Matrix, and the vibration is controlled via the

control vector and is measured at closely spaced, discrete time points along the state trajectory.

2.1 Systems Models

Two principal systems models were considered by Davis, the local and the global models. For

both models it is assumed that, at each of the discrete time p6in_ along the State tmject0ry at which

the control is to be exercised; the relationship between the helicopter's vibration response and its higher

harmonic blade pitch control can be adequately modeled with a T-Matrix that linearly relates the two
over the feasible range of control (i.e., the control constraints are satisfied).

2.1.1 Local Model

The local model defines the change in vibration response due to a change in the control vector

between the current time and the previous time; specifically

=

where = _

T

Z

0

i

L

N

Zi = T(Oi - Oi-1) + Zi-1 (2-1)

plant matrix, quasi-static transfer matrix, T-Matrix; the dimension is (2L x 6)

a vector0f the coefficients of the cosine and sine terms of the vibration output

vector; the dimension is (2L × l)

a vector whose elements are the N I; the N, and the N + 1 harmonic cosine and

sine Fourier coefficients of the blade pitch control as defined in the rotating

system; the dimension is (6 x l)

time point number (e.g., number of rotor revolutions)

number of accelerometers used to measure the vibration (L = 6 for this study)

number of blades in the rotor system (N = 4 for this study)

2:i_ Giobal Model

The global model defines the vibration response due to the current control vector where the response

is measured relative to that for which no control is applied; specifically

Zi = TOi + Zo_ (2-2)

2

i



which in expanded form is

zl ]
zzl

Z12

where

T

Z

0

0

i

L

N

TI,1 T1,2 T1,3 T1,4 T1,5 T1,6
T2,1 T2,2 T2_3 T2,4 T2,5 T2,6
T3,1 T3,2 T3,3 T3,4 T3,5 T3,6

Zo I

Zo3

T12,1 T12,2 T12,3 T12,4 T12,5 T12,6 ZOl 2

01

02

03

04

05

06

1

augmented plant matrix, augmented quasi-static transfer matrix, augmented

T-Matrix; the last column is the uncontrolled vibration output vector (i.e., the

Z-Vector which corresponds to a zero Theta-Vector); the dimension is (2L x 7)

a vector of the coefficients of the cosine and sine terms of the vibration output

vector; the dimension is (2L x 1)

a vector whose first six elements axe the N - 1, the N, and the N + 1 harmonic

cosine and sine Fourier coefficients of the blade pitch control as defined in the

rotating system, and whose last element is identically equal to one; the dimension

is (7 x 1)

uncontrolled condition (i.e., evaluated for a zero Theta-Vector)

time point number (e.g., number-6f rotor revolutions)

number of accelerometers used to measure the vibration (L = 6 for this study)

number of blades in the rotor system (N = 4 for this study)

2.2 Plant Model and Propagation

A randomly generated plant model, rather than a detailed helicopter simulation, was assumed for

this study. The randomly generated model offers the advantage of rapid determination of state while

having lower core requirements.

2.2.1 Plant Initialization

The T-Matrix is initialized with randomly selected elements such that the corresponding output

response vector (the Z-Vector) has a norm equal to a specified value. First the initialization procedure

randomly selects the elements of a reference control vector (the Theta-Vector) which has a norm equal

to a specified value. Then the procedure randomly selects the elements of the T-Matrix. Using this

first T-Matrix, the corresponding Z-Vector and its norm are computed. This first value of the Z-Vector

norm is compared with its specified value and is then used to scale the first selected T-Matrix so that

it will yield a Z-Vector with the specified norm.

2.2.2 Initial Estimate of the Plant for the Identification Algorithm

The controller algodthras that Davis studied (ref. I) required that an initial estimate of the T-Matrix

be provided in order to start the identification process. Accordingly, specification of an initial estimate of

the T-Matrix was required in this comparison study. However, the ability of the identification algorithm



to convergeto an acceptableT-Matrix in a reasonable number of iterations was strongly dependent

on how close the initial estimate was to the actual T-Matrix for the cases which were examined.

The obvious implication is that a priori knowledge of the T-Matrix is required in order to initiate

the identification process. Such a priori knowledge of the T-Matrix can be obtained for T-Matrices

computed by a detailed helicopter simulation such as the G400 utilized by Davis. However, when the

initial T-Matrix is randomly defined, as in the cases reported herein, this a priori knowledge of the
T-Matrix does not exist. The initial estimate of the T-Matrix is

_" = T + CE_ (2-3)

where

C E initial estimate sealirig coefficient for tile _domincrement matrix term (The

nominal value of C E used in this study is 0.001.)

T randomly generated reference T-Matrix (actual T-Matrix) which represents the

actual helicopter plant ..........

estimate of the T-Matrix

matrix composed of uniform distribution random numbers 6 [0.0, 1.0]. _ has the
same dimension as the T-Matrix

The numerical values for the elements of _ are generated with a random number generator function,

which generates a unique sequence of random numbers associated with a "starting seed" Value. A starting

seed value of 10691 was u_d throughout this study. = -

A typical actual T-Matrix (T in equation (2-3)) evaluated at the beginning of the fourth rotor

revolution is shown below. If CE has the value of 0.001 (the nominal value used in this study), each

element of the estimated T-Matrix, 2_, is within 0.001 of the corresponding element of T.

T .._

0.007993 -0.013754 0.003573 -0.021985 -0.005801 -0.001251 -0.003533

-0.025252 -0.000619 -0.023625 -0.016151 -0.014406 -0.017560 0.003986

-0.021377 -0.002089 0.013464 -0.009670 0.007831 -0.019800 -0.007464

-0.027889 -0.004685 0.009947 -0.022052 -0.018997 -0.027528 -0.020086

-0.020592 -0.020647 -0.015647 0.018364 0.024838 0.015331 0.011077

-0.006769 0.023869 -0.007284 0.002757 -0.013934 0.011925 0.015603

0.014590 0.024039 -0.000702 -0.004288 0.023183 0.011904 -0.013820

0.002893 0.026490 0.015204 -0.000985 -0.009007 0.007339 -0.004398

-0.005821 --0.003604 -0.011587 0.018989 0.002882 -0.019509 0.011354

0.018340 0.009994 -0.014521 -0.020836 0.017659 0.015580 -0.007720

0.016701 --0.020694 -0.026045 -0.008956 -0.029130 0.006915 0.002154

0.008342 0.021497 -0.001494 0.011485 0.001207 -0.027292 0.020534

2.2.3 Plant Propagation

The time history of the helicopter plant (i.e., the time history of the T-Matrix) is the state trajectory

which is of concern in this study. Although use of a detailed helicopter simulation is a physically mean-

ingful method to propagate the T-Matrix state trajectory, use of a random propagation scheme provides a

more difficult test for the controller and has the advantage of computational rapidity with minimal core
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requirements. Although several random propagation schemes were developed, the following defined

method was used throughout this study. The reference T-Matrix, which represents the actual helicopter

plant, was propagated in time according to

= + (2-4)

where

Cp
T

plant propagation scaling coefficient for the random increment matrix term

randomly generated reference T-Matrix (actual T-Matrix) which represents the

actual helicopter plant

matrix composed of uniform distribution random numbers E [0.0, 1.0]. _ has the
same dimension as the T-Matrix

time point number (e.g., number of rotor revolutions)

The numerical values of the T-Matrix elements are generated with a random number generator

function, which generates a unique sequence of random numbers associated with a starting seed value.

The performance index reduction obtainable at the end of the first controlled step is dependent on the

value of this seed, which was arbitrarily selected to be 7391 during the early computational checkout.

For this value, however, the performance index only decreased 19.4% by the end of the first controlled

step for the unconstrained deterministic controller. A larger first-step reduction is necessary to properly

ascertain the effectiveness of the controller being investigated. Accordingly, a seed study was performed

in which various values of the starting seed were tried until one was found which would yield an

acceptable first-step reduction. As a result of this study, a starting seed value of 83298 was selected.

Use of this value resulted in a first-step performance index decrease of 67.0% for the unconstrained

deterministic controller. This value was used throughout the remainder of this study.

2.2.4 Actual Vibration Response

The actual helicopter vibration response (actual Z-Vector), Z, is determined from the actual

T-Matrix, T, and the current control vector (current Theta-Vector), according to

z = TO (2-5)

where

T

Z

0

randomly generated reference T-Matrix which represents the actual helicopter plant

actual helicopter vibration response Z-Vector defined by equation (2-5)

the current and/or most recently defined control Theta-Vector

2.2.5 Measured Vibration Response

The measured vibration response (measured Z-Vector) is the vibration response used by the iden-

tification algorithm to identify the T-Matrix. The measured Z-Vector differs from the actual Z-Vector

in that it includes measurement noise. The measurement noise can be constrained by either constant

bounds or by a sinusoidal envelope as required. The measured Z-Vector is defined according to

2 - Z(1.O + CMCCZ_) (2-6)

5



where

measured helicopter vibration response Z-Vector

Z actual helicopter vibration response Z-Vector

v vector composed of uniform distribution random numbers 6 [0.0, 1.0]. v has the
same dimension as the Z-Vector

C'M measured response scaling coefficient for the random increment matrix term

1.0 if'r>l.0D+10C'C cos(360.0"[o'-_ t/-r]) if 7"< 1.0D + i0

¢r phase of the sinusoidal coefficient of the random term expressed in a
nondimensional fraction of a rotor revolution

t time expressed in rotor revolutions

"r period of the sinusoidal coefficient of the random term expressed in rotor revolutions

_s technique for introducing random noise defines the numerical v_ues for the elements of v

using a random number generator function, which generates a unique sequence of random numbers
associated with a Starting seed value. A Siarting seed value of 49377 was used throughout this study.

2.3 General Controller Definition

_: :_ _e Control acting on the helicopter plant produces a vibration response in accordance with the

models presefited in sections 2.2.4 and 2.Z5 fi_ 1. The objective of the subject controllers Of this study

is to determine an "optimal" Them-Vector throughout the T-Matrix trajectory and to use it appropriately

to control the plan-t-in such h way that it "minimizes" somescalar measure of the vibration response (the

performance index). The general scheme for the closed-loop vibration control system (VCS) employed

by Davis (ref. 1) and used with the global model for this study is illustrated in figure 2. The general

scheme used with the local model is slightly different than that shown in figure 2. During the operation

of this system, the current Z-Vector is input to the identifier which uses it to estimate the current

T-Matrix. The resulting estate of the T-MaCax is theninput to the c0ntroller which Uses it to define
an _'optimal" change to the Them-Vector. This increment to the Them-Vector is, in turn, summed with

the previous Them-Vector to provide an updated control to the plant.

2.3.1 Vibration Minimization as a Trajectory Optimal Control Problem

The VCS operates throughout the trajectory. Specifically, the controller is engaged to determine

tli6op_mal e0n_i _ttd0_ei),_Sp_ di_s_-_-t_e l_-_ong the state-_fectoryl _e objective is
to minimize the performan_ index as defined at each 0f these time points. This assumes that the

performance index is dependent only on the currently defined T-Ma_; the_cu_ntly defined control;
and, in the case of the stochastic controllers,_e currently defined covariance tensors that represent the

measurement noise and T-Matrix identification statistics. Analytic solutions to this problem employ

convenfi0fial max[mincalcuius (refs. 3, ,4, andS) rather than Pontryagin's Maximum Principle (re fs. 6

aKd7)_or the calculus of Variations (_fs. 3and 6). P0ntrya_'s_M_imhm Pn_fic[ple 6r the_calculfs of

Variafi0ns wouidbe required if the value of _e performance index _d/or compli_cewith the consents

were dependent on finite segments of the trajectory (i.e., the state history over finite periods of time).

6



Typically, for the helicoptervibration problem, inequality constraintsare imposedon the higher
frequency blade pitch motions, blade loads, or other vehicle parameters, in addition to the basic require-

ment to minimize the vibration measure performance index. The standard max/min calculus formulation

provides, however, for the imposition of equality constraints rather than inequality constraints. Equality

constraints are imposed by adjoining a vector of corresponding constraint functions to the performance

index using an adjoint vector. This adjoint vector is composed of a Lagrangian multiplier for each

constraint function. The helicopter vibration reduction problem differs from this standard formulation in

that inequality constraints, rather than equality constraints, are imposed. Consideration of the helicopter

physics, for example, would more likely result in imposing an upper limit on the N per rev blade

pitch angle rather than constraining the N per rev blade pitch angle to be exactly some nonzero value.

This difference in constraint form can, however, be eliminated by a simple conversion of the inequality

constraint functions to corresponding equality constraint functions. This is accomplished by defining a

"slack variable" for each inequality constraint function. Specifically, the helicopter vibration reduction
problem has the form:

Minimize the performance index

subject to inequality constraints

J = f[z(0)]

¢k(8) _> 0 for k-- l, 2 ..... M

(2-7)

(2-8)

Define a slack variable, a k, for each inequality constraint Ck (0), such that

al = Ck(e) for k = 1, 2 ..... M (2-9)

The slack variables are then treated as additional components of the Them-Vector for the purpose of

deriving necessary conditions for optimality. The Them-Vector together with the slack variable vector,
the Alpha-Vector, form the augmented Them-Vector, O, according to

o[0]o (2-I0)

where

(_ "--

c_2

c_M

(2-11)

The equivalent equality constraints, Ck(O), are defined

Ck(O) = ¢k(O) -- a 2 --=0 for k = l, 2 .... , M (2-12)

Using the slack variables defined by equation (2-9) and the corresponding equivalent equality

constraints defined by equation (2-12), the helicopter vibration reduction problem can now be formulated
in the standard max/min calculus form:

7



Minimize the performance index

subject to equality constraints

J = f[z(o)]

_b/c(e) = 0 for k = 1, 2 ..... M

(2-13)

(2-14)

Necessary conditions for optimality can now be readily expressed using stand_d_max/min cal_culus.

The augmented performance function F[Z(8), 0] is formed by adjoining the constraint vector _b to

the original performance index f[z(e)] using an adjoint vector, A, whose elements are composed of

Lagrangian multipliers, one for each consent:

F[Z(O), {3] = f[Z(O)] + AT d? (2-15)

where

z

A2
and _=

_U

(2-16)

Necessary conditions for Optimality are obmined_[_y solving the 6 + M simultaneous equations

obtainedby se_g the first partial of F[Z(O), e] with respect to the elements of e equal to zero

together with the M constraint equations (eq. (2-14)):

OF
-------0

8F
n-- 0

Oaj

=0

for j= 1,2 ..... 6

forj = 1,2 ..... M

forj = 1, 2 ..... M

These 6 + 2M simultaneous equations are, in general, nonlinear.

(2-17)

(2-18)

(2-19)

Up to this point, the performance index and the constraints have been presented in general form.

One commonly used measure of vibration, employed by Davis (ref. 1), is a quadratic metric of the

Z-Vector, ZTWz Z. This metric is appropriate to use as the performance index:

J = .f[z(e)] = ZrWzZ

where .....

f[z(0)] performanceindex
WZ diagonal weighting matrix

(2-20)

It is emphasized that this choic e Of a performance index_ is but one ofm_y _ssibiljfies.._is

performance index is relatively simple, representative of the control objective,-_d amefiable tO the

pertinent'mathematical derivations.
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In general, constraints have to be imposed on the Them-Vector in order to ensure that the higher

harmonic control (HHC) motion of the blades does not result in excessive blade loads, excessive control

system loads, and/or excessive power requirements. These constraints are inequality constraints and

have the same general form as that defined by equation (2-8). A possible set of constraints can be

defined by imposing a closed bound on the Fourier coefficients for the N- 1, N, and N + 1 harmonics

as defined by the components of the Theta-Vector. Specifically

_bl(e) = A1 - (02 + 022) > 0

_2(0) = A2 - (02 + 02 ) > 0

_b3(e)=A 3-(02+02 ) >0

for the (N - 1) harmonic

for the (N) harmonic

for the (N + 1) harmonic

(2-21)

(2-22)

(2-23)

where A1, A2, and A 3 are the squares of the respective constraint bounds.

Although this choice of blade pitch constraints is the same as that used by Davis (ref. 1) to define

his external limiting constraints, as used here they serve as an example only. In general, it is necessary

to analyze each particular rotor system to determine the pertinent constraints for that system. In general,

the mathematical form of the blade pitch constraints will differ for different types of rotor systems

(e.g., articulated, teetering, hingeless) and even, possibly, for different rotor systems of the same type.

Certainly in this latter case, the constraint bounds will, in general, differ for different rotor systems.

2.3.2 Kalman Filter Plant Matrix Identification

The identifier part of the VCS mentioned in section 2.3 employs a Kalman filter to identify the

T-Matrix during each cycle. Equations (2-4) and (2-6) can be rewritten as

[T-Matrix]i = [T-Matrix]i_ I + [Random AT-Matrix]i_ 1 (2-24)

[Measured Z-Vector] = [Actual Z-Vector] + [Random Measurement Noise] (2-25)

where [T-Matrix] has dimension (2L x M); [Random AT-Matrix], which has dimension (2L x M), is

considered to be a zero mean random sequence forcing function which varies with flight condition; and

[Random Measurement Noise], which has dimension (2L x M), is assumed to be zero mean Gaussian.

The Kalman filter identification scheme used by Davis (ref. 1), and for this study, identifies each

row of the T-Matrix (Tj for j -- 1, 2, ..., 2L) individually. The principal steps in this Kalman filter
identification scheme are

lo Compute the (M x 1) Kalman filter gain vector Ki:

P_0i
(2-26)

where

P is the (M x M) covariance matrix of the T-Matrix row currently being

identified, evaluated after the measurement of the Z-Vector during the

current cycle



.

0 is the Them-Vector with dimension (M x 1)

R is the (1 x 1) scalar covariance of the measurement noise

M is the principal dimension of the Them-Vector; M - 6 for the local model,

M = 7 for the global model

i time point number (e.g., number of rotor revolutions)

Update/identify the j-th row of the T-Matrix, Tj:

[Tj]T+I = [7_j]T +//'/{([Measured Z-Vectorlj)i--eT[_'j] T} (2-27)

3_

where
i

Tj is the j-th row of the T-Matrix (for j = 1, 2 ..... 2L), a row vector with
dimension (1 x M)

L is the number of accelerorneters used tO measure the vibrati0n(L= 6 for this

study)

j is the T-Matrix row number (j -- 1, 2, ..., 2L) .......

Evaluate the (M x M) matrix S, which is the covariance of the Tj being identified, for the

conditions prior to the measurement of the Z-Vector during the cu_nt_c-ycie, accord_ng_to

4.

Si = Pi + Qi (2-28) --_.

where Q is the (M x M) covadance of the j-th row of the [Random AT-Matrix] forcing

function which is aterm in the Tj being identified.

Update the (M X M) marx/_, which is the covariance of the Tj being identified, for the

conditions after the measurement of the Z-Vector during the current cycle, according to

s o ers ....
Pi+l = Si - oTsioi + Eli __ (2-29)

Step 4 completes the Kalman filter identification cycle. This process generates (M x M) S, P, and Q

cov_arice matrices foreach (1 x M)rowbf the T-Matrix. These covariancernatrices, gr0u_daccording

to type (the 2L S-Matrices, the 2L P-Matrices, and the 2L Q-Matrices), define their Corresponding

__ eovadance tensors (the S-Tensor, the P-Tensor, and the Q'Tensor). _e in_vidual (M x

M) covariance matrices are actually covarianee lattices in their corresponding (M x M x 2L) rank

three covariance tensors. Specifically, the covadance S-Tensor (P-Tensor, Q-Tensor) is composed of

all the individual covadanee S-Matrices (P:Matrices, Q-Matrices) generated for all the rows of the

T Matrix. These rank three covadanee tensors are required to fully describe the statistics when the

rows of the T-Matrix have little or no dependency. It was assumed by Davis (ref. 1), and for this

study, that the S, P, and Q covariance matrices, defined during the identification of a single row of

the T-Matrix, w_ suffice for the id_nu-'-fi_fibn of the other rows oftheT-Matrix. This assumption

may be adequate when there is some dependency between the rows of the T-Matrix as would likely

be the eiase for the helicopter vibration problem. In that case, equations (2-28) and (2-29) need only

10
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be evaluated once per cycle. These eovariance matrices are not, in general, the same for each row of

the T-Matrix. Use of the full rank three S, P, and Q covariance tensors in the T-Matrix identification

procedure simply requires the appropriate dimensioning of the associated S, P, and Q arrays and the

evaluation of equations (2-28) and (2-29) during the identification of each row of the T-Matrix.

2.4 Description of Controllers

The three controllers studied by Davis (ref. 1) were compared using the models presented in

sections 2.1, 2.2, 2.3, and their subsections. Although the real or actual helicopter vibration reduction

problem is as defined by equations (2-8) and (2-9), Davis (ref. 1) and his reference sources solved a

somewhat different problem which, in general, neither minimizes the measure of vibration nor necessarily

satisfies all the constraints. Indeed, the three controllers examined all use an external limiting scheme

to adjust the solution control vector to yield a feasible solution (i.e., a solution which satisfies all the

inequality constraints) in the event that the initial solution control vector results in a violation of one or

more of the inequality constraints. Methodology of this type is usually used when the classical methods

yield a problem which appears to be intractable or unsolvable.

Instead of directly addressing the problem defined by equations (2-7) and (2-8), the following

problem is solved by each of the three subject controllers, at each of the discrete time points along the

T-Matrix trajectory for which the controller is employed:

Minimize J = ZTWzZ + OTW00 + AOTWAoAO + [Stochastic Term if defined] (2-30)

Subject to No constraints for this optimization problem

where

AO = Oi - 0i- 1 (2-31)

In reality, however, constraints are imposed on the solution Them-Vector after the fact. The optimal

solution Theta-Vector is first determined from necessary conditions for the minimization of ,/as defined

by equation (2-30). This first-cut optimal solution Theta-Vector is then checked for constraint violations

and is adjusted, as required, to satisfy the constraints. In general, adjustments of this kind to the

optimal solution Theta-Vector drive the solution away from optimality With a corresponding loss in

performance (i.e., an increase in the value of or). When using methodology of this type, it is advisable

to have knowledge of the sensitivity of the performance to optimality. This after-the-fact imposition of

constraints is referred to as "external limiting."

The motivation for this scheme is the use of the optimization process to prevent the control (and

its rate) from becoming too large while attempting to minimize the vibration measure. The relative

emphasis between the vibration measure and the control values is adjusted through the selection of

the weighting matrices WZ, WO, and WZXO. Penalizing the control vector by incorporating it in the

performance index in this manner is referred to as ,'mtem_ limiting."

For stochastic controllers a stochastic term, which is a function of the T-Matrix row identification

covariance P-Matrix, is added to the performance index. The principal idea here is to use the already

generated statistical data (i.e., the covariance P-Matrix) to better estimate the solution Them-Vector by

using the optimization process to drive the covarianee P-Matrix toward the zero matrix of the same

11



dimension. The implication is that better estimates of the solution Them-Vector occur for better estimates

of the T-Matrix. ContinUer schemes of this type will yield a suboptimal feasible solution if external

limiting is imposed. Furthermore, if the sensitivity of performance to optimality is not too great and

the weighting matrices are reasonable, this feasible suboptim_s6iutioh can _/iel_l a satisfactory value

of the real part of the performance index (i.e., the ZTWz Z term in equation (2-30)).

Necessary conditions for optimality are Obtained by solving the six simultaneous equations resulting

from setting the first partial derivative of J with respect tO the Theta-Vector equal to zero:

OJ
m = 0 for j = 1, 2, .... 6 (2-32)

The external limiting scheme first checks for the constraint violations. These constraints are ex-

pressed as

ROi -" _/02j-1 + 022j -< [Rei]m_ for j = 1, 2, 3 (2-33)

_d

RAe, = v/Ae223_l + Ae22i < [R/xei]m= for j = 1, 2, 3

In the event that the j-th 0 constraint is violated, 02i_ 1 and 02j are adjusted according m

(2-34)

7

e=;_,= \ ) e2 _, and e=,= ) e=s (2-3s)

This p_da:is re_eat_ for the A0 Constr_ntsl Which are adjuSfed inas|milar m_nefas required.

For example, in the event that the j-th A0 constraint is vioiated, A02j_ _ and A02j are adjusted
according to

( [RAefl=,= and A02j = ([RA0:]ma* _ AO2j (2-36)

The threecontrollersthatDavis {mf.l) investigated(thedeterministic,thecgutiOus,and the dual

controllers)were examined and compared as the objectof thisstudy. Davis'sdescriptiofiof_ese

controllersand theequations(rcf.I)ispresentedagainherefortheconvenienceof thereader.

2.4.i -_ Deie rmfixisfl_ _0-Kt/-olle r

The deterministic controller has the VCS general scheme, defined in Section- 2.3 and figure 2.
The equations, which define the updated theta control vector for both the local andgi0bal models, are

12



determined by solving the problem defined by equations (2-30) and (2-31). In this case, the performance

index is

J = ZTWzZi + OTWoOi + AoTwtxoAOi (2-37)

Provision is made for internal and external limiting in lieu of formal constraints on the theta control

vector. Internal limiting can be applied via the last two terms in the performance index (eq. (2-37)),

and external limiting can be imposed by the procedure defined by equations (2-33) through (2-36).

The theta control vector is updated according to

where

O_ = D{(TTwz T + WAo)Oi_ 1 - TTWzZi_I}

O* = D{WAo0 i- 1 - TTWzZo}

for the local model

for the global model

(2-38)

(2-39)

D = [TTWz T + W 0 + WAO] -1 for both models (2-40)

and

M

WZ

wo
WAO

0

i

is the principal dimension of the Theta-Vector and equals either 6 or 7 for the

problems reported herein: M = 6 ff the local model is employed, M = 7 if the

global model is employed

is the (M x M) diagonal weighting matrix for the Z-Vector terms

is the (M x M) diagonal weighting matrix for the Theta-Vector terms

is the (M x M) diagonal weighting matrix for the A0-Vector terms

denotes that this value of 0 is the solution to equation (2-32)

denotes the uneontroUed condition (i.e., evaluated for a zero Them-Vector)

is the time point number (e.g., number of rotor revolutions)

2.4.2 Stochastic Controllers

The cautious and dual stochastic controllers have the VCS general scheme, defined in section 2.3

and figure 2. The equations, which define the updated theta control vector for both the local and global

models, ate determined by solving the problem defin_ by equations (2-30) and (2-31). The performance

index for the cautious and dual controllers and the theta control vector update equations are defined in

sections 2.4.2.1 and 2.4.2.2, respectively.

As in the case of the deterministic controller, provision is made for internal and external limiting

in lieu of formal constraints on the theta control vector. Internal limiting can be applied via the second

and third terms in the performance index (eq. (2-37)), and external limiting can be imposed by the

procedure defined by equations (2-33) through (2-36).

2.4.2.1 Cautious Controller--When the local model is used, the performance index assumed for

the cautious controller is

J = zTwzzi + oTwoi + AO_WAoAOi + [Tr(Wz)IAoTpiAOi (2-41)

13



The thetacontrol vector is updatedaccordingto

where

and

O_ = D[(TTWzT + WAO + A{Tr(Wz)}Pi)Oi_ 1 - TTWzZi_I] for the local model (2-42)

D = [TTWz T -4- W O + WAO + A{Tr(Wz)}Pi] -1 for the local model (2-43)

M

P

A

i

is the principal dimension of the Theta-Vector, equal to 6

is the (M x M) covariance matrix of the T-Matrix row currently being identified,

evaluated after the measurement of the Z-Vector during the current cycle (see

section 2.3.2)

adjusts the magnitude of the stochastic term relative to the nonstochastic term in the

control law defined by equations:(2-41), (2-42),and (2-43)

denotes that this value of # is the solution to equation (2-32)

is the time point number (e.g., number of rotor revolutions)

When the global model is used, the performance index assumed for the cautious controller is

J = zTwzzi + oTwoi + AoTwAoi + (Tr(Wz))OTpioi (2-44)

it is convenient to partition the (7 x 7) P-Matrix into four submatrices: the (6 x 6) PTT submatrix,

the (6 x 1) PTZ submatrix, the (1 X 6)PZT submatrix, and the (1 x 1) Pzz submatrix (a scalar).

Specifically,

Note that

PTT I PTz l

(6×6) i(6×1)
P = ., (2-45)

PZT I Pzz
(1 x 6)',(1 × 1)

PZT = PTz

..... _e theta control vector for flie giobal model is _en Ul_datedaccording to

0_ D[WAo6i'I - TTWzZo - A{Tr(Wz)}PTZ] for the global model

where _

D = [TTWzT + W o + WAo + A{Tr(Wz)}PTT] -1 for the global model

(2-46)

(2-47)

(2-48)

and = =

14
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is the principal dimension of the Them-Vector, equal to 7

denotes the uncontrolled condition (i.e., evaluated for a zero Them-Vector)



2.4.2.2 Dual Controller--When the local model is used, the performance index assumed for the

dual controller is:

(2-49)

The theta control vector is updated according to

where

for the local model (2-50)

[D= TTWz T + W o + WAo - A for the local model (2-51)

and

M

P

R

A

i

is the principal dimension of the Theta-Vector, equal to 6

is the (M x M) covariance matrix of the T-Matrix row currently being

identified, evaluated after the measurement of the Z-Vector during the current

cycle (see section 2.3.2)

is the (1 x 1) scalar covariance of the measurement noise

is a parameter which is used to adjust the magnitude of the stochastic term

relative to the nonstochastic terms in the control law defined by

equations (2-49), (2-50), and (2-51)

denotes that this value of/9 is the solution to equation (2-32)

is the time point number (e.g., number of rotor revolutions)

When the global model is used, the performance index assumed for the dual controller is:

(2-52)

As in the case of the cautious controller, it is convenient to partition the (7 x 7) P-Matrix into

four submatrices: the (6 x 6) PTT submatrix, (6 x 1) PTZ submatrix, the (1 x 6) PZT submatrix, and

the (1 x 1) PZZ submatrix (a scalar). The theta control vector for the global model is then updated

_cording to

where

for the global model (2-53)

[D = TTwzT + W 0 + WAO - A for the global model (2-54)

and

M

0
is the principal dimension of the Theta-Vector, equal to 7

denotes the uncontrolled condition (i.e., evaluated for a zero Them-Vector)
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3 COMPARISON STUDY

The selection and definition of the baseline plant and controller are described in this section, and

then the effects of the initial estimate of the T-Matrix, the plant matrix propagation rate, and the

measurement noise on controller performance are defined.

3.1 Baseline ControHer

The models used to initialize and simulate the plant and its 'propagation, the actual and measured

vibration response, the controllers, and the T-Matrix identification process are defined in section 2.0 '
z

and its subsections. In this section, the selection of the important controller constants and the modes 0f _
-- i

operation which establish the baseline controller is described. The deterministic controller was used in

making this selection.:

±

3.1.1 initial Random Number Generator Seed _

In order to evaluate controller perfo_ance, it is desirable that the response to the initially computed
control be significantly less than the initial %ncriati:0iled" condition_ O'he-dnc0ntroiled condition, which -

corresponds to a zero theta control vector, exists just prior to engaging thec0ntroller to compute the first _
nonzero theta control vector.) The random method used to initialize, th-en to pr0pag_-e with time, the -

numerical values of the T-Matrix elements defines these numerical values from a sequence of random

numbers generated with a _d0m number generatoYfuncti0n. _A: p_icu!ar starting seed value has a i
unique sequence of random numbers associated with it. The performance index reduction obtainable

at the end of the first controlled step (i.e., the initial decrease in response) is highly dependent on

the value of this starting seed, The actual numerical values of this starting seed are not of interest in _

reporting the results of this study; however, for convenience in identification, starting seed values are

presented. A starting seed value of 7391 was arbitrarily selected and used for the checkout computations.
The corresponding response for this Value, Which has an initial-decrease of only 19.36%, is shown in -

figure 3 for the case where there is no limiting and the T'Matrix is invariant. For all cases investigated,

zero theta control is assumed to the initiation of the fourth revolution, at which time the controller is

engaged. The _sp0nse to the first computed nonzero theta control vector occurs at the beginning of the ._
fifth revolution._" _ _ _ _ ........... _

In a seth for a better starting seed (i.e., one which :would yield an acceptable initial decrekse in

response), 17 different starting seed values were tried (tab. 1). No limiting and an invariant T-Matrix

was assumed for all cases. A starting seed value of 83298 was selected because it yielded the greatest

initial decrease; a 66.96%, or slightly better than three-to-one, first-step reduction of the performance

index. The corresponding response is shown in figure 4.

3.1.2 ControlLimi_
_ _- . ....

The philosophy and methodology of control limiting as employed by the subject controllers is

discussed in section 2.4. Recall that (1) internal limiting applies a limiting "pressu_" on the theta control
vector appliei:I by adjoifi|ng terms containing the theta tonal Vector and its rate to the perform_ce

index that is minimized by the optimization process; (2) external limiting, which is applied after the
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fact, adjusts the theta control vector to the appropriate constraint circle(s), defined by equations (2-33)

and (2-34), in the event that the optimization process yields a theta control vector in violation of a
constraint. The use of both external and internal limiting was examined.

3.1.2.1 External Lhniting--Extemal limiting is applied by specifying the values of the least

upper bound (1.u.b.) for the external limiting magnitude constraints ([RO_]maz in equation (2-33))

and/or for the external limiting rate (or incremental) constraints ([RAoj]maz in equation (2-34)). It

is assumed that the values of [ROflmaz are the same for j - 1, 2, 3, and similarly that the values

of [RA0flmaz are the same for j --- 1, 2, 3. Using one rotor revolution as the unit of time, the rate
(or incremental) constraint functions defined by equation (2-34) are computed using a method that

makes them numerically equivalent to the corresponding magnitude constraint functions defined by

equation (2-33). Because of this computational methodology, when the values of [ROflmaz are specified

to be the same as the corresponding values of [RAOflmaz, the constraints defined by equations (2-33)

and (2-34) are equivalent. Furthermore, when a value of [ROflmaz is specified to be different from that

of the corresponding value of [Rzxo_]maz, the constraint corresponding to the smaller value becomes
active first, thus dominating the external limiting process. Consequently, under these conditions it is

only necessary to specify one of either the magnitude or the rate (or incremental) constraints (i.e., to

define either [Rai]maz or [RAO_]maz for j - 1, 2, 3) when examining the effect of external limiting.
Both were examfned, however, in order to check out the computational process.

A summary of the effect of the value of [e_-]maz or [RAo ]maz on the performance index at the
end of the first controlled step (i.e., " " _at the lmtiauon of the fifth revolution) when there is no internal

limiting is presented in table 2, and the response for selected cases is illustrated in figures 5 through

10. The T-Matrix is assumed to be invariant for these cases and hence the lowest possible value of the

performance index J (i.e., the greatest lower bound [g.l.b.]) is invariant to revolution. For this case,

the g.l.b, has the value 0.0005287. If no external limiting applied, or ff external limiting constraints

are inactive, the controller will define the Theta-Vector such that its corresponding performance index

has the value of the g.l.b, at the end of the first controlled step. A range of values for [R0flmaz

(and equivalently for [RAo:_]maz which yield nonsaturated active constraints of interest were identified.
This range is (1, 40) for both constraints since the unit time-is one revolution. The threshold value at

which the constraints become active is 36.91; the constraints are active for values below 36.91. The

constraints become saturated for values below approximately 1. The value of the performance index at

the end of the first controlled step as a function of the constraint limit (i.e., [R0j]maz or [RAOflmaz)
is shown in figure 11, and the revolution at which steady state is achieved, als6 as a function of the

constraint limit, is shown in figure 12. It was decided to use [R0.]maz = 40 and [RA0.]nmz = 10 to
.7 .7

produce a three-per-rev delay to steady state (i.e., steady state is achieved at the initiation of revolution

8) without invoking both constraint limits (fig. 12) for the baseline case that will be used as the standard

for comparisons. This baseline ease has the same response as that shown in figure 7.

3.1.2.2 Internal Lhniting_Intemal limiting is applied by specifying values of the diagonal el-

ement of WO in equation (2-30) (Diag(W0)) and the diagonal elements of WAO in equation (2-30)

(Diag(WA0)). The effect of internal limiting was evaluated by varying the values of Diag(W 0) and

Diag(WAo) through several orders of magnitude with no application of external limiting. For this eval-

uation, it was assumed that each of the elements of Diag(W0) had the same value, and similarly that

17



each of the elements of Diag(WAe) had the same value. The cases which were examined are defined

in table 3, and the response for the selected cases is illustrated in figures 13 through 21.

The first case in this series has no limiting at all, and is provided as a reference for comparison. ,

The response of the nonaugmented Z-Vector quadratic metric, defined by equation (2-20), is shown in

these figures rather than that of the complete performance index, defined by equation (2-37), since it is :

the Z-Vector metric which is the measure of helicopter vibration. For these cases, the T-Matrix was

randomly propagated in time according to the procedure defined in section 2.2.3 and by equation (2-4), i
where a value of 0.0Oi was assumed for the scaling coefficient Cp: (See Section 3.1.3 for a discussion "

of the selection of the value of Cp, and section 2.2.2 for numerical values of the elements of a typical
actual T-Matrix.)

=

It can be seen from table 3 and figures 13 through 21 that a change of approximately two orders of

magnitude of the value of either an dement of Diag(W0) or'an :dement Of Diag(WA0) is required to go

from the limit saturation condition to the no-limiting condition. The Selection of the appropriate values

for an element of Diag(W0) and an element of Diag(W/,,0) to satisfy the limiting constraints (i.e., the

conditions required by equations (2-33) and (2-34)) by means 0f imemal limiting, wlu'le minimizing the

Z-Vector metric, is not necessarily a simple ma_,ei:. Indeed, as was pointed Out _n-se'ction 2.4_ °eXternal

limiting is provided after the fact as a backup means to assure that the solution is feasible (i.e., the

limiting requirements are satisfied). It was also pointed out in section 2.4 that the probiemwhich is

defined when the Z-Vector metric has internal limiting terms adjoined to it as per equation (2-30) is not

the same problem as minimizing the Z-Vector metric by itself when constraints are imposed on the theta
control vector. This can be dlustrated by Considering a'scalar _e-(]:_, when T, Z, ZO,:O, AO:I-_Wz, _.

W O, and WAO are all scalar). Two of several possible situations are illustrated in figures 22 and 23. In

both of these examples, it is assumed that the performance index specified by equation (2230) has the
form : :

J = Jz + Jo : (3-I) |

Z = TO + Zo and Jz = Z 2

and Jo= ¢0 (3-2)

where ff

then dg and dO can be expressed

Jz = a(0- _

where a,/3, 7, and ¢ are scalar dons_ts. = _"

Constrain_ on-the theta control vector are im_o_i; specifie_y _-_

=

0 6 [0, 0maz] (3-3) -

For this Case,= Jz is the actual measure of thevibra_0n, J0 is the theta control pen_ term, and z,

J is the augmented performance index tlaat the subject controllers seek tO _e. The unconstrained

minimum of JZ, for the case illustrated in figure 22, is assumed to occur at 0Z,_, ., which is within

the constraint limits of equation (3-3). The augmented performance index, which is the sum of Jz and

J#, has a minimum which occurs at Omin, which in this case is less than 0Z, n_n= and lies within the

constraint limits. The discrepancy in performance between the solutions to the actual problem and the
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augmented problem is the difference between the minimum value of Jg and the value of org which

occurs at Ornin. The corresponding discrepancy in the optimal values of 0 is the difference in value

between Oz,,,,n and Omin.

The case depicted in figure 23 is similar to that illustrated in figure 22 except that the unconstrained

minimum of ,12 is assumed to occur at a 0 value which exceeds its upper constraint limit, Omaz. In

this case, the minimum feasible value of d2 occurs when 0 is on the Omaz constraint bound. As in the

previous case, the discrepancy in performance between the actual problem and the augmented problem

is the difference between the minimum feasible value d2 and the value of dz which occurs at Omin. In
both cases, the minimum feasible value of dz (i.e., the actual measure of performance) is less than that

obtained when the theta control penalty term is adjoined to the performance index to form d. For this

reason, it was decided not to apply internal limiting to the remaining eases generated in the comparison
studies.

3.1.3 Plant Matrix Propagation Rate

Several values of Co, the random term scaling coefficient of the plant matrix propagation model
described in section 2.2.3 and equation (2-4), were examined to determine a baseline value which would

produce a significant, but not overly exaggerated, random change in the plant matrix over 100 revolu-

tions. A summary of the eases which were examined is presented in table 4, and the T-Matrix time

histories for Up values of 0.0005, 0.001, and 0.002 are shown in figures 24, 25, and 26, respectively.

A value of 0.001 for Up was selected for the baseline controller. This value yields a representative and
reasonable time propagation of the T-Matrix.

3.2 Effect of the Initial Estimate of the T-Matrix on Controller Performance

The Kalman filter identification scheme, described in section 2.3.2 and used in this study, requires

an initial estimate of the T-Matrix to start the identification algorithm. The ability of the algorithm to
converge to a reasonable, identified T-Matrix greatly depends on the accuracy of this estimate. The

method used to select this estimate is an issue which is separate from the evaluation and comparison
of the three subject controllers. The real issue here is the sensitivity of controller convergence to the

initial estimate. For this reason, this initial estimate was simplified and systematized using the random

procedure defined in section 2.2.2 and by equation (2-3). For convenience, equation (2-3) is shown here
as well as in section 2.2.2. Specifically, the initial estimate of the T-Matrix is

= T + CE_ (2-3)

where

T

initial estimate of the scaling coefficient for the random increment matrix term (The

nominal value of CE used in this study is 0.001.)

randomly generated reference T-Matrix (actual T-Matrix) which represents the

actual helicopter plant

estimate of the T-Matrix

matrix composed of uniform distribution random numbers E [0.0, 1.0]. _ has the
same dimension as the T-Matrix
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The numerical values for the elements of _ are generated with a random number generator function,

which generates a unique sequence of random numbers associated with a starting seed value. In a manner

similar to that described in section 3.1.1, a starting seed value of 10691 was selected and used throughout
this study.

In a manner similar to that described in section 3.1.3, the values of CE were examined for the

deterministic controller. Abasellne C E value of 0.00i was selected because that value yielded an initial !

estimate of the T-Matrix _hich Was nearly as inaccurate-as poss_|eWhile stiii allowing the identification

algorithm to reliably converge]n a reasonable manner. _e principal cases examined are defined in :

table 5, and the response for selected cases is illustrated in figures 27 through 31. When the baseline --

values of the starting seed and C E am used for the initial T-Matrix estimate for the deterministic i
controller, the response is that shown in figure 27. _is is the reference case for the T-Matrix Initial

Estimate Study summarized in table 5.

A sufficiently large value of GE was selected to ensure that the deterministic controller would not

converge to the response of the baseline case shown in figure 27. This value, CE = 1.0, was used to

test the cautious and dual controllers to see if their stochastic nature would overcome the effects of a bad :

initial estimate of the T-Matrix. Specifically, using GE = 1.0 to define the initial T-Matrix estimate, --

the adjoint coefficient, A, of the stochastic term in the performance index for both stochastic controllers =

was varied parametrically through several orders of magnitude (see table 5) to see if convergence to the

response of the baseline case could be obtained. Figures 32 through 41 Show that use of the stochastic -

controllers in this manner did not enhance convergence for bad initial estimates of the T-Matrix. Indeed, ----

in s6rne cases it made ma-tters worse. Convergence o_y occurred for the trivial limiting case when

A _ 0, or equivalently when the stochastic controllers coalesced with the deterministic controller.

3.3 Effect of the Plant Matrix Propagation Rate on Controller Performance

- The rhethod u_d to propagate the T-Matrix is deSCribed in section 2.2.3, specifically by equa-

tion (2-4). For convenience, equation (2-4) is shown here as well as in section 2.2.3. Specifically, the

reference T-Matrix, which represents the actual helicopter plant, was propagated in time according to

: + (2-4)l
where

Cp
T

plant propagation scaling coefficient for the random increment matrix term

randomly generated reference T-Matrix (actual T-Matrix) which represents the

actual helicopter plant

( matrix composed of uniform distribution random numbers E [0.0, 1.0]. ( has the
same dimension as the T-Matrix

z time point number (e.g., number of rotor revolutions)

The nUmerical Values of the T-Matrix elements am generated with a random number generator

function, which generates a Unique sequence of random numbers associated with a starting seed value.

As a result of the seed study described in section 3.1.1, a s_iig seed value of 83298 was selected and

used th/0ughout this study.'
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The baseline value of Cp, the random term scaling coefficient in equation (2-4), was selected to be

0.001 to produce a significant, but not over-exaggerated, change in the T-Matrix over 100 revolutions

(section 3.1.3). This case is shown in figure 42. Questions about the ability of the stochastic controllers

to converge to the responses obtained with the deterministic controller motivated investigation of the

effect of the value of Cp on this convergence. Parametric values of Cp for the deterministic controller

were tested to find values of Cp which result in divergence of the T-Matrix. The cases tested are defined

in table 6, and the responses for selected cases are shown in figures 42 through 46. Strong T-Matrix

divergence occurred for Cp = 0.0026 (fig. 45), so this value was used when testing the stochastic
controllers for performance enhancement.

In a manner similar to that employed for the T-Matrix Initial Estimate Study, the adjoint coefficient

A of both stochastic controllers was varied parametrically through several orders of magnitude to see if

the stochastic controllers would provide better responses than the deterministic controller, or if, indeed,

they would converge to the response of the reference deterministic controller for which Cp = 0.0026.

The cases examined are defined in table 6. In general, the stochastic controllers did not perform as well

as the deterministic controller except for the trivial limiting cases when A _ 0, or equivalently when
the stochastic controllers coalesced with the deterministic controller. Selected cases of the cautious and

dual controllers for T-Matrix propagation with Cp = 0.0026 are shown in figures 47 through 55.

3.4 Effect of Measurement Noise on Controller Performance

The Z-Vector was the only parameter whose measurement uncertainty was considered. This uncer-

tainty (the "measurement noise") is modeled in accordance with the procedure defined in section 2.2.5

by equation (2-6). The measurement noise manifests itself either directly or indirectly in two of the

controller computations: (1) identification of the T-Matrix (section 2.3.2, equation (2-27)), and (2) the

performance index (section 2.4, equation (2-30)). The measurement noise is modeled in such a way that

it is (1) random with constant limiting envelopes ("random nonperiodic"), (2) random with sinusoidal

limiting envelopes ("random periodic"), or (3) constant or sinusoidal with no randomness ("nonrandom

constant" or "nonrandom periodic").

3.4.1 Random Nonperiodic Measurement Noise

The method used to simulate the measured vibration response is described in section 2.2.5, by

equation (2-6). For convenience, equation (2-6) is shown again here. The measured helicopter vibration

response is defined according to

= Z(1.0 + CMCCV ) (2-6)

where

Z

g/

CM

cc

measured helicopter vibration response Z-Vector

actual helicopter vibration response Z-Vector

vector composed of uniform distribution random numbers 6 [0.0, 1.0]. v has the
same dimension as the Z-Vector

measured response scaling coefficient for the random increment matrix term

1.0 if_r> 1.OD+IOc0s(360.0°[o "+ t/r]) if 7"< 1.0D + 10
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cr phase of the sinusoidal coefficient of the random term expressed in a

nondimensional fraction of a rotor revolution

t time expressed in rotor revolutions

r period of the sinusoidal coefficient of the random term expressed in rotoi" revolutions

This technique for introducing random noise defines the numerical values for the elements of v

using a _dom number generator function, which generates-a unique sequence of random numbers

associated with a starting seed value. A starting seed value of 49377 was used throughout this study.

The effect of the Z-Vector measurement noise was first investigated for random nonperiodic cases

for the deterministic controller. For these cases CM, the scaling coefficient for the measurement noise

term in equation (2-6), was varied parametrically to determine the sensitivity of the response to mea-

surement noise. The cases examined are defined in table 7, and the response for selected cases is shown

in figures 56 through 61. The reference no-noise case (the "0% noise level" case) is obtained when

C'M = 0. This case (fig. 56) serves as a reference for comparison with the other cases described in this

section. The 20% n0ise ievelcase (_ is representative of the lower end of normal noise, and the

120% noise level case (fig. 61) is representative of the situation in which the noise overshadows the

Z-Vector jt_lf. _.... _ ....

The stochastic controllers were compared with the deterministic controller for both the 20% and

the 120% noise levels for parametric values of the adj0intcoefficient A. As in previous comparisons,

A was varied through several orders of magnitude to see if the stochastic controllers would provide

better responses than the deterministic controller. The cases examined are defined in table 7. In

general, the stochastic controllers did not perform as well as the deterministic controller except for the

trivial limiting cases when A ---, 0, or equivalently when the stochastic controllers coalesced with the

deterministic controller. Selected cases of both the cautious and dual controllers for 20%_d !_Q%

noise ie_,-els-_are-s_56_wffln Hgu_s 62 through 7_These_:results support the contention _at the statistical

dimension of the sVoc_fic controllers defined for-this study wasinst_ffici_t for the fully random T-

Matrix model with independent rows that was used. Either the full'covariance tensor should-have been

used in the definition of the stochastic controllers, or the rows of the plant model should have had a

sufficient de_ of linear dependency so that a single lattice of the covariance tensor would suffice.

3.4.2 Random Periodic Measurement Noise

=

The effects of random periodic measurement noise were investigated in a manner similar to that

described in section 3.4.1. For these cases, the limiting envelope for the random noise is sinusoidal

with a 20-cycle period (_" = 20 revs in equation (2-6)) and a zero phase angle (o" = 0.0 revs in

equation (2-6)) rather than constant. As in the case of random nonperiodic measurement noise, CM

was varied parametrically from 0% noise level to 40% noise level for the deterministic controller, to

determine the sensitivity of the response to measurement noise. The cases examined are defined in

table 8, and the response for selected cases is sh0_ _figures 80, 81, and 82. The 20% noise ease

(fig. 81) is representative of the lower end of normal n_se. :_e Situation in which the response to the

measurement noise by itself is of the same order of magnitude as the response to the Z-Vector with no

measurement noise was not investigated for random periodic measurement noise cases.
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The stochastic controllers were compared with the deterministic controller, assuming a 20% noise

level, for parametric values of the adjoint coefficient A. As in previous comparisons, A was varied

through several orders of magnitude to see if the stochastic controllers would provide a better response
than the deterministic controller. The cases examined are defined in table 8. In general, the stochastic

controllers did not perform as well as the deterministic controller except for the trivial limiting cases
when A ---, 0, or equivalently when the stochastic controllers coalesced with the deterministic controller.
Selected cases of the cautious and dual controllers with a 20% measurement noise level are shown in

figures 83 through 90. These results also support the contention that the statistical dimension of the

stochastic controllers defined for this study was insufficient for the fully random T-Matrix model with
independent rows that was used. Either the full covariance tensor should have been used in the definition

of the stochastic controllers, or the rows of the plant model should have had a sufficient degree 'of linear
dependency so that a single lattice of the covariance tensor would suffice.

3.4.3 Nonrandom Periodic Measurement Noise

Finally, the effects of nonrandom periodic measurement noise was investigated in a manner similar

to that used for random periodic measurement noise. For these cases, the limiting envelope is identically
the measurement noise, and is sinusoidal with a 20-cycle period (r = 20 revs in equation (2-6)) and

a zero phase angle (o" = 0.0 in equation (2-6)). The random vector v in equation (2-6) was set to
be identically equal to 1 which, correspondingly, bypasses the generation of random elements in the

measurement noise. As in the case of random periodic measurement noise, the scaling coefficient UM
for the measurement noise term in equation (2-6) was varied parametrically from the 0% noise level case

to the 40% noise level case for the deterministic controller, to determine the sensitivity of the response

to measurement noise. The cases examined are defined in table 9, and the response for selected cases
is shown in figures 91, 92, and 93. The 20% noise case (fig. 92)is representative of the lower end of
normal noise. The situation in which the response to the measurement noise by itself is of the same

order of magnitude as the response to the Z-Vector with no measurement noise was not investigated
for nonrandom periodic measurement noise cases.

Even though it was expected that use of a stochastic controller would not have any advantage in
cases having nonrandom noise, the stochastic controllers were compared with the deterministic con-

troller, assuming a 20% noise level, for parametric values of the adjoint coefficient _. As in previous
comparisons, _ was varied through several orders of magnitude. The cases examined are defined in
table 9. In general, the stochastic controllers did not perform as well as the deterministic controller ex-

cept for the trivial limiting cases when _ _ 0, or equivalently when the stochastic controllers coalesced
with the deterministic controller. Selected cases of both the cautious and dual controllers with a 20%

measurement noise level are shown in figures 94 through 101.

4 _S_TS

The helicopter vibration reduction capability of two stochastic controllers was evaluated and com-

pared with that of the deterministic controller. The first step was to define a baseline deterministic

controller. The resulting baseline definition is described in sections 3.1 through 3.4 and is characterized
by specific baseline values of parameters in equations (2-3) through (2-6). For convenience these equa-
tions are shown here together with the baseline values of these parameters. The initial estimate of the

23



T-Matrix is defined by

where

_" = T + CE_ (2-3)

CE initial estimate of _e scaling coefficient for the random increment matrix term (The

nominal value of C E used in this study is 0.001.)

T randomly generated reference T-Matrix (actual T-Matrix) which represents the

actual helicopter plant

estimate of the T-Matrix

matrix comp0s0:l of Unifoma distribution random numbers-E [0.0, 1.0]. _ has the

same dimension as the T-Matrix. The baseline value of its associated starting seed

for this study is 10691

The reference T-Matrix, which represents the actual helicopter plant, was propagated in time

according to

where

where

Ti = Ti-1 + Cp_ (2-4)

C a plant propagation scaling coefficient for the random increment matrix term. The

baseline value of Cp used:in this study =is=0.001 ......

T randdml)/generated reference T-MatriX (actual T-Matrix) which represents the

actual helicopter plant ::

matrix composed of uniform distribution random numbers E [0.0, 1.0]. _ has the

= =same i_i_-6-fisi_6n _-tiae_tdx, The baseiinevaiue of its associated starting seed

used in this study is 83298

i time point number (e.g., number of rotor revolutions)

The actual helicopter vibration response Z is defined according to

Z = TO (2-5)

T randomly generated reference 7_'Matdx which represents the actual helicopter plant :-

Z actual helicopter vibration response Z-Vector defined by equation (2-5)
0 the current and/or most recently defined control Them-Vector

- --_e measured heiicoptcrvibration response is defined according to

2= zo:o+cMcc,,i
where

= =s
(2-6) :

me_ured heiicoptervibration mspon_ Z-Vector

Z actualhelicoptervibrationresponse Z-Vector= _

E
R
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v vector composed of uniform distribution random numbers E [0.0, 1.0]. v has the

same dimension as the Z-Vector. The baseline value of its associated starting seed

.... used in_____this study_is 49377 _=_ _ _ :_ __ii:_i:, _ _:_ _ _ ....
......... UM ...... me__st_nse-_ing coefficient for-_e:r-andom increment matrix term. (The

baseline value of CM used in this study is 0.200.)
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cc

O"

t

7"

1.0 ifT"> 1.OD+IOcos(360.0°la + t/7"]) if 7" < 1.OD + 10

phase of the sinusoidal coefficient of the random term expressed in a
nondimensional fraction of a rotor revolution

time expressed in rotor revolutions

period of the sinusoidal coefficient of the random term expressed in rotor revolutions

The next step was to define the reference deterministic controllers to be used as the basis of

comparison for the investigations of the effects of the initial estimate of the T-Matrix (see. 3.2), the

T-Matrix propagation rate (sec. 3.3), and measurement noise (sec. 3.4). To be able to make these

definitions, however, it was first necessary to determine the performance degradation of the deterministic

controller for each of the comparison conditions to be investigated. Specifically, the performance

degradation of the deterministic controller from its baseline configuration was determined for

1. an increasing error in the initial estimate of the T-Matrix (modeled using the value of CE),

2. an increasing scaling coefficient used for T-Matrix propagation (modeled using the value of

Cp),

3. an increasing envelope for the measurement noise (modeled using the value of CM).

Using this performance degradation data, the reference deterministic controllers were selected to

define conditions which would be relatively more advantageous to the stochastic controllers. These

reference deterministic controllers differ from the baseline deterministic controller by the following
values:

1. CE = 1.0 for the initial estimate of the T-Matrix investigation

2. C a = 0.0026 for the T-Matrix propagation investigation

3. C M = 0.2000 for the investigation of measurement noise at the lower end of normal noise
levels -.

4. C M = 1.2000 for the investigation of measurement noise when it overshadows the Z-Vector
itself

The comparison of the helicopter vibration reduction capability of two stochastic controllers with

that of the deterministic controller was then accomplished by assuming the numerical characteristics of

the appropriate reference deterministic controller and then parametrically varying the adjoint coefficient

A of the stochastic controller being investigated (sees. 3.2, 3.3, and 3.4).

4.1 Results Obtained from the Comparison Study

In general, the deterministic controller proved to be reliable and robust for the assumed random

plant and the conditions which were investigated. The deterministic controller was able to converge to

the desired response for (I) large excursions in the initial estimate of the T-Matrix, (2) large T-Matrix
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propagation rates, and (3) moderately high levels of measurement noise. Aside from minor exceptions
which were probably coincidental, and the trivial limiting cases for which A ---, 0, the stochastic con-

trollers did not perform as well as the deterministic controller for the cases which were investigated.
Neither external nor internal limiting was applied in order to ensure that the deterministic solution was
optimal. Absence of limiting did not affect these results,

The study of the effect of the initial estimate of the T-Matrix on controller performance showed

(see. 3.2) that the deterministic controller would converge to the response of the baseline controller

even if the T-Matrix initial estimate scaling coefficient CE, were increased by two orders of magnitude
(figs. 27 through 31), but that the stochastic controllers would not converge to the baseline case for

any value of the adjoint cbefficient X(figs. 32 fhrough 41)w_hen the initial estima_ 0f_e T-Matrix

was made sufficiently large by setting CE = 1.0 in equation (2-3). In other words, the statistical

characteristics of the stochastic controllers, as defined for this study, did not alleviate the problem posed
by a bad initial estimate of the T-Matrix.

During the study of the effect of the pl_tmatrix propagation rate on controller performance

(see. 3.3) the stochastic controllers, as defined for this study, did not enhance convergence to the reference

case when the T-Matrix propagation rate was made large by setting Cp = 0.0026 in equation (2-4).

Convergence did occur, but only when the value of the adjoint coefficient A (figs. 47 through 55) was
small enough that the stochastic terms were negligible. The statistical characteristics of the stochastic

controllers not only did not alleviate the problems which occur with high T-Matrix propagation rates,
but they actually exacerbated the situation.

It w_ Seen during the studyof-the effect of measurement noise on Controller perfo_ance (sees. 3.4.1

through 3.4.3) that the stochastic controllers, as defined for this study, did not enhance convergence to the

reference cases either for relatively low measurement noise (e.g., when CM = 2.000 in equation (2-6))

or for relatively large measurement noise (e.g., when CM = 1.2000in equation (2-6)). As in the other

cases, convergence did occur, but only when the value of the adjoint coefficient A (figs. 62 through
79) was sufficiently small that the stochastic te_ were negligible =and: _econtroller coalesced to the

deterministic controller. The presence of the stochastic terms was actually a hindrance rather than a
help to convergence.

4.2 Identification of Possible Causes of the Results of this Study

Based on the results of previous studies, it had been anticipated that the stochastic controllers would

perform better than the deterministic controller under some conditions. The deterministic controller,

however, appeared to perform betf.er thai3 thestochastic co nt_|lers fo r the eases which were ex_ed.
Indeed, the statistics and its method of application to stochastic controllers W_ more of a hindrance than

a help to convergence. The stochastic controllers, as defined and tested for this study, would approach
the performance of the dete_istic controller only when the value of the adjoint coefficient A was

small enough to cause the magnitude Of the stochastic terms tO become negligible when compared to

the deterministic part of the controllers. This apparent lack of performance of the stochastic controllers

is most likely due to (I) the use of a random plant model rather than a detailed helicopter simulation,

(2) the use of a single lattice (i.e., Matrix) of the covarianee tensor for the identification process, (3) the

adjoining of a stochastic term to the performance index, which is functi0n_yde_ndent on a single
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lattice of the covariance tensor, or (4) the coalescence of stochastic controllers with the deterministic

controller for the assumed measurement noise model.

4.2.1 Random Plant Model Versus Detailed Simulations Used on Previous Studies

The apparent lack of performance by the stochastic controllers could be the result of assuming

simplified statistics to define the stochastic performance index. Specifically, it was assumed that a

stochastic term defined as a function of a single lattice of the rank three covariance tensor associated with

T-Matrix identification could be adjoined to the performance index so that its inclusion would enhance

vibration reduction. The presumption that the identification statistics can be adequately represented by

a single covariance lattice has the effect of reducing the statistical dimension by one, and can be made

if the identification statistics (e.g., the covariance lattice) for each row of the T-Matrix is nearly the

same. If the helicopter fuselage was a rigid body that pivoted at a point, its associated T-Matrix would

be approximately of rank one and, correspondingly, a single covariance lattice should be adequate for

all the rows of the T-Matrix. The helicopter fuselage is, in general, a nonlinear aeroelastic body with

bending modes. How reasonable it is to use a single covariance lattice in the performance index depends

on at least three circumstances: (1) to what degree the fuselage approximates a rigid body, (2) whether

or not the vibration response as measured by the accelerometers is similar to that which would result

if the fuselage were a rigid body, and (3) how much variation exists in the identification statistics (i.e.,

the covariance lattice) for each T-Matrix row. The expected values of the rank three covariance tensors

(note, each covariance tensor is composed of twelve covadance lattices, each of which is of rank seven)

were determined for a number of the cases computed during this study. In none of the cases examined

did it appear as if the statistics could be adequately represented by a single lattice of the rank three

eovariance tensor. This result is undoubtedly due to the random methods employed during this study

to generate and propagate the T-Matrix. The use of a single lattice of the covariance tensor not only

affects the definition of the stochastic performance index, but it also affects the T-Matrix identification

process itself.

4.2.2 Plant Matrix Identification

A single lattice of the covafiance tensor, rather than the full rank three covariance tensor, was

used in the Kalman filter identification process (see. 2.3.2, equations (2-26) and (2-28)). The "correct"

procedure would be to define a Kalman filter gain, Kj, for each T-Matrix row, Tj, being identified.

Since the T-Matrix appears in the control laws of the three controllers (sees. 2.4.1, 2.4.2.1, and 2.4.2.2),

it was expected that the use of only a single lattice of the rank three covariance tensor for T-Matrix

identification could significantly affect the corresponding definition of the T-Matrix. Oddly enough, but

not necessarily in contradiction with the apparent difficulties in defining the optimal control with the

stochastic controllers, the evidence obtained during this study clearly indicates that this approximation

did not significantly adversely affect the T-Matrix identification. Indeed, the T-Matrix identification

process used in this study appeared to work reasonably well.

4.2.3 Stochastic Term in Performance Index

It was pointed out in section 2.3.1 that typically for the helicopter vibration reduction problem, it was

desired to minimize a scalar measure of the vibration (i.e., a vibration metric) subject to the imposition
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of inequality constraints on the control. It was also pointed out that the adjoining of nonperformance

terms, other than bona fide equality constraint functions adjoined by bona fide Lagrangian multipliers,

to the performance index did, in general, result in a suboptimal solution. Indeed, a scalar example of

this performance degradation was illustrated in section 3.1.2.2. There is no apparent justification for

adding separate stochastic terms to the performance index of the stochastic controllers examined in this

study; indeed, it should be expected that the addition of these stochastic terms to the perfo_ce index

would decrease performance. If the philosophy is to enhance identification by driving the covariance

to zero; this should be done in the identification part of the process in conjunction with the covariance

update. Even if the addition of a covariance term to the performance index were desirable, this term

should, in general, involve the full rank three covariance tensor, not just a single lattice of it, for the

T-Matrix model used in this study.

4.2.4 Coalescence of Stochastic Controllers with the Deterministic Controller

Rather than adding _covariance terms to the performance index as was done for the cautious and

dual controllers, a more meaningful approach to using the statistics of the process to enhance selection

of the control is suggested in part by the minimum variance controller presented by Davis in reference I.

For this approach, the expected value of the quadratic metric of the Z-Vector defined by equation (2-20)

is minimized subject to the inequality constraints defined by equation (2-8):

Minimize

J = E[ZTWz Z] (4-I)

subject to i _

tbk(0 ) > 0 for k = 1, 2, ..., M (4-2)

where

f+oo f+oo r+oo T
E[ZTWz Z] - (4-3)

and f(Z) is the probability density function.

This Stochastic controller should perform as well ag-0rbeRer _an the other:stochastic controllers

which were the subject of this study simply because this controller directly addresses the real problem,

that is, minimization of the expected value of the vibration metric. The probability density function for

the random modeling used in this study is uniform and is defined by

f(Z) = O if Izkl < 1 for k = 1, 2 ..... 2L (44)

where C is a nonzero constant.

Setting the derivative of J to zero for the uniform probability density function defined by equa-

tion (44) yields the same conditions for optimal control as those defined for the deterministic controller.

In other words, this stochastic controller coalesces with the deterministic controller when the probability

density function becomes uniform.

___--
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28



The stochasticpart of the controller defined by equations (4-1) through (4-4) only describes the

measurement noise statistics; the statistics of the T-Matrix identification process is not included. This

means that the T-Matrix is assumed to be known identically and, correspondingly, the performance

of this stochastic controller should be better than that of stochastic controllers for which the T-Matrix

is identified with statistical errors (e.g., the cautious and dual controllers). If indeed this is true, and

it appears reasonable that it is even though it is not readily provable, then the stochastic controllers

as defined and modeled in this study cannot be expected to perform any better than the deterministic
controller.

4.3 Theoretical Limitations of These Controllers

Two principal limitations in the formulation of the subject controllers were identified: (1) the

definition of the desired control problem to be solved, and (2) the selection of the T-Matrix identification

algorithm. The desired control problem to be solved is simply to define the control which minimizes a

metric of the vibration, subject to the imposition of inequality constraints on the control, and in which

the T-Matrix is identified in an efficient, reliable, and accurate manner. The T-Matrix identification

algorithm determines the quality of the identified T-Matrix and its associated statistics, which are used

by the controller to define the "optimal" control.

4.3.1 Definition of the Optimal Control Problem

The subject controllers of this study appeared not to directly address the desired control problem,

defined in equations (2-7) and (2-8). Instead these controllers were formulated to address the different

problems defined by (1) equations (2-37) through (2-40), for the deterministic controller, (2) equa-

tions (2-41) through (2-48), for the cautious controller, and (3) equations (2-49) through (2-54), for

the dual controller. The stochastic controllers included internal limiting in the performance index and

external limiting applied after the fact, rather than adjoining the appropriate constraints to the perfor-

mance index with an adjoint vector composed of Lagrangian multipliers. Furthermore, these stochastic

controllers incorporated the statistics as add-on stochastic terms to the performance index. Because

of this, it is expected that these controllers could never perform better than a controller designed to

solve the desired problem defined by equations (2-7) and (2-8). For convenience in documentation,

the limitations of these controllers are grouped according to their applicability to the deterministic and

stochastic parts of the controller.

4.3.1.1 Deterministic Part--The deterministic part of all three controllers should include only

that which is to be minimized. The limitations of optimization theory require that this performance

index be a scalar. Furthermore, to facilitate the automation of the process, this performance index

should be a function of only one performance parameter. If more than one performance parameter is

to be minimized, some parameterization scheme should be employed in which one of the performance

parameters is minimized while the others are parametrically varied as appropriate.

The relatively common procedure of simply adding the performance parameters to form a scalar

performance index is fraught with peril. In the first place, the minimization of a sum of parameter

terms is not the same thing as minimizing the individual terms. It is possible that some of the terms

will decrease while others will increase, or that some of the terms will not decrease as much as desired
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while others will decrease more than required. The practice of using weighting coefficients for the

various terms requires trial-and-error selection and adjustment for example problems and can, in some

circumstances, become a problem of sorcery and witchcraft. Even if all the terms decrease in an i

acceptable manner, a minor change in the problem can cause the individual terms in the solution to

have different relative values, thus complicating the interpretation of the results.
=

The example scalar problems illustrated in figures 22 and 23 clearly show the discrepancy between -

the solutions to the optimal control for minimization of the vibration metric, Ogm_n, and the optimal
control for minimization of the augmented problem, 6rain, with a corresponding discrepancy in the -

attainable vibration reduction. The actual multidimensional helicopter vibration problem examined i

during this study has similar discrepancies from the actual optimal control vector and its corresponding
attainable vibration reduction.

4.3.1.2 Stochastic Part--The stochastic terms in the performance index and corresponding con-
and dual controllers were assumed to betrol laws for the cautious dependent on only a single lattice of

the rank three covariance tensor, rattier th_a on _e entire covari-ance tensor itself. Since the assumed

T-Marx modeis ar_random in _elements andhave fioapparent row _(or'column) linear dependence,

there is no apparent justification for assuming that a single lattice (matrix) of the covariance tensor asso-

ciated with a specific row of the T-Matrix adequately describes the statistics of T-Matrix identification.

A single lattice might suffice if some degree of linear dependence between the T-Matrix rows existed.

In general, only the actual single scalar measure to be mini_ed (or maximized) and the duly
adjoined (added with Lagranglan muq6pliers)'proper consent functions (i.e., constraints of the form

defined by equation (2'i4)) should be elements 0f the performance index. _ere is no advantage to

including anything else in the performance index; indeed, the inclusion of anything else will result

in a suboptimal solution. For this reason, it should be expected that stochastic controllers whose

performance indexh/ts the form defin_by equati0n (2-30) w_ll_not generaiiy:perfo_ as Welias either

deterministicor stochastic controllers whose performance index has the form defined by equation (2-7)

orequation (2-13). - _ _. .
4.3.2 Limitations of the Plant Ma_ Identification Algorithm

The principal limitation of the Kalman filter identification scheme used in this study was the

accuracy required for the initial estimate of the T-Matrix (sec, 3,2). In general, notwithstanding the

use of only a single lattice of the covariance tensor, this identification algorithm appeared to adequately
identify the T-Matrix for reasonable initial estimates of the T-Matrix.

s .... e0 ROLLER DEVELOPMENT

The results of this study suggest that (1) controller performance could be improved by defining
the performance index to be the actual vibration measure _d expressing the resulting op_al control

problem in the classical max/min calculus form with constraints, (2) an improved stochastic controller

could be defined by using the classical form, with the performance index defined as the next-cycle-
expected-value of the actual vibrafioffineasure, (3) other ]de-ni_flcation schemes should be examined to

determine if any of them provide better identification when used with these specific controllers, and
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(4) a relativelysimplehigherharmonicbladepitchcontrol schemefor the cockpit canbe definedwhen
the aforementionedcontrollersareemployed.

5.1 Theoretical Considerations

The theoretical considerations focused on (1) the deterministic and stochastic parts of the optimal

control problem the controller is designed to solve, and (2) the T-Matrix identification scheme.

5.1.1 Deterministic Part

It is strongly contended that both the deterministic and stochastic controllers should be designed

to solve the optimal control problem defined by equations (2-7) and (2-8), in which the inequality

constraints are transformed to equality constraints and then adjoined to the performance index with an

adjoint vector composed of Lagrangian multipliers, rather than the problem defined by equations (2-30)

and (2-31), in which the control constraints are treated as part of the performance measure to be

minimized instead of constraints to be satisfied. Specifically, only the vibration measure should be

used to form the performance index. For the deterministic controller, the performance index should be

ZTWzZ as defined by equation (2-20). For the stochastic controller, the performance index should

be the expected value of ZTWgZ, E(ZTWzZ), as defined by equation (4-1) at the next time step.

The next time step is usually the first opportunity to implement the newly determined control vector.

The control vector constraints, which are inequality constraints, can easily be transformed to equality

constraints by using the slack variable method defined by equations (2-9) through (2-12) so that they

can be adjoined to the performance index with Lagrangian multipliers and the problem can be solved

using conventional max/min calculus. This methodology is common to the recommended deterministic

and stochastic controllers and is referred to herein as the deterministic part of the problem.

A problem similar to the problem addressed in this study, of a lower dimension but with the form

defined by equations (2-7) and (2-8), was solved analytically in this manner to demonstrate the feasibility

of obtaining an analytic solution to the full problem. A cursory attempt was made to solve the full

problem addressed in this study. Although a full analytic solution to this problem has not been derived

at this time, the solution process clearly shows that the solution, if it exists, is similar to that obtained

for the lower dimensional problem which was solved.

5.12 Stochastic Part

It is also strongly contended that the stochastic controller should be designed to solve the optimal

control p.,,roblem defined by equations (4-1) through (4-4), in which the performance index is defined to
be E(2" WzZ) at the next time step, rather than the problems defined by equations (2-30) and (2-31),

in which the control constraints are treated as part of the performance measure to be minimized instead
of constraints to be satisfied. Specifically, the statistics of the problem should be incorporated into

the solution by using the appropriate probability density functions to define the expected value of the
vibration measure, F_,(ZTWzZ), that is to be minimized at the next time step, rather than by adding

bits and parts of a covariance tensor to a deterministic performance index. This methodology is referred

to herein as the stochastic part of the problem and is unique to the stochastic controller.
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5.1.3 Plant Matrix Identification

Although the Kalman filter identification scheme used in this study adequately identified the

T-Matrix only for reasonable initial estimates of the T-Matrix, no alternative identification schemes

were examined, it is noted that the a-cfu_-scheme em_oyed _n_is study used only a single lattice of

the covariance tensor, and extension of this scheme to use the full covariance tensor only requires a

relatively simple and minor modification. It was determined-ttiat the initial estimate of the T-Matrix

does affect controller performance. Alternative identification schemes should be examined, as Jacklin

did in his comparison of five identification Schemes (ref. 8), to determifie if any o_er schemes offer

greater reliability, robustness, simplification, ease in initiation, or other _advantages. It would greatly

simplify matters if it were not necessary to provide an initial estimate to the T-Matrix, and if covariance

tensors were not required as p_=of=_.-_dentific-adoh _r_ss_ _-::: =

5.2 Cockpit Application

When the optimal control problem is in the form defined by equations (2-7) and (2-8), that is,

when the problem is to determine the control that minimizes a metric of the vibration subject to the

imposition of inequality constraints on the control, the solution can be exploited to yield a relatively

simple higher harmonic blade pitch control device for the cockpit. The definition of the constraint

envelopes will, most likely, be based on required maintenance intervals and Wear/fa_tig_ue/structural

limits. Typically, a relationship exists between the level of the o-pc-rating higher harmonic blade pitch

constraint envelopes and the time left before the next required m_ntenance. It,s expected that thehigher

the operating constraint envelope levels, the shorter the operating time to the next required mainten_¢e.

Accordingly, a set of operating constraint envelope lim]ts, Ch_tedT_b), the time tO neXt _quJred

maintenance, can be defined. For example, operating constraint levels corresponding to time to next

required maintenance values of 1,000 hr (for normal operation), 100 hr (for elevated operation) , 10 hr

(for higher elevated operation), 1 hr (for still higher elevated b_ration), arid 6-min (for emergency

operation) can be defined. Correspondingly, the HHC unit (fig. i02) would inchide the HHC switch

with an OFF position and positions for the time to next required maintenance values s_cifiecl above.

Since the time to next required maintenance is dependent on the_ operating Cons_aJnfievel, if the _C

switch is set to different positions between consecutive maintenances, then evaluati0n of the time to

next required maintenance requires an integration of the current time to next required maintenance.

This integration can be easily accomplished with an integration circuit in the HHC unit. A convenient

way to display these results would be to include a digital counter on the I-I/-IC unit Which displays the

"integrated actual" time to next required maintenance.

...... _7_ : = _- ?_ =?_:=_Z_:_-::- : :, :r: :- _::_ _ ..... : _ LZ .

Operationally, the pilot-would set the HHc switch to the 1,000-hr (normal) position When HHC

was desired. If an emergency occurred involving a rotor imbalance of someqdnd, the I-IHC s-_,i_fi could

be turned to its limit at the 6-rain (emergency) position. If no improvement occurs, the pilot would

have to take other measures including backing the I-IHC switch down to a iov_er Setting. Ifkafisfactory

improvement occurs, the switch would be backed down to a lower, but acceptable, setting after the pilot

regains satisfactory control of the helicopter.

i
I

32



REFERENCES

1. Davis, Mark W.: Refinement and Evaluation of Helicopter Real-Time Self-Adaptive Active Vibration

Controller Algorithms. NASA CR-3821, 1984.

2. Lizak, Alfred A.: Design, Operation, and Maintenance Manual for NASA-Ames Rotor Test Appara-

tus. SER-50988, Sikorsky Aircraft, 1977.

3. Halfman, Robert L.: Dynamics, Systems, Variational Methods, and Relativity. Addison-Wesley

Publishing Co., Inc., 1962.

4. Hamming, R. W.: Numerical Methods for Scientists and Engineers. Second ed., Dover Publications,

Inc., 1973.

5. Edwards, C. H., Jr.; and Penney, David E.: Calculus and Analytic Geometry. Prentice-Hall, Inc.,

1982.

6. Schultz, Donald G.; and Melsa, James L.: State Functions and Linear Control Systems. McGraw-Hill

Book Co., 1967.

7. Pontryagin, L. S.; Boltyanskii, V. G.; Gamkrelidze, R. V.; and Mishchenko, E. E: The Mathematical

Theory of Optimal Processes. John Wiley & Sons, Inc., 1962.

8. Jacklin, Stephen A.: Performance Comparison of Five Frequency Domain System Identification

Techniques for Helicopter Higher Harmonic Control. 2nd International Conference of Rotorcraft

Basic Research, University of Maryland, Feb. 16-18, 1988.

33



TABLES

Table 1. The Effect of the starting seed on the first-step decrease in Jr.

1 i - r

Starting seed

value for _Figure Percentage decrease in d

propagation number after the first-control step

7391 3 19.356

3962117 56.375

435 42.919

10691 16.931

7398495 31.775

990339 28.594

62117 50.663

49377 64.825

" 83297 65.800

83293 56.900

83298 4 66.956

27438 28.256

27437 39.706

83299 - 66.206

83300 48.869

83301 30.175

83296 43.619

Notes:

aThe starting seed value of 7391 for T-Matrix initialization and propa-

gation was assumed initially during program checkout.

bA starting seed value of 83298 for T-Matrix initialization and propaga-

tion yielded the greatest decrease in J after the first control step.

J
E

mg_

i

i
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Table2. Summaryof the external limiting study.

External limiting l.u.b.

100,000,000

1,000

100

80

Number of

Figure Percentage decrease in d revolutions

number after the first control step to g.l.b.

66.956 5

66.956 5

66.956 5

66.956 5

60 66.956 5

40 5 66.956 5

36.91 66.956 5

36.905 66.950 5

34 66.444 5

31 66.019 5

28 62.681 5

27 61.700 5

20 6 52.006 6

10 7 29.556 8

8 23.850 9

6 8 18.831 11

4 13.644 14

2 7.231 23

1 9 3.569 30+

0.1 10 0.013 30+

0.01 --0.356 30+

0.001 --0.394 30+

0.0001 -0.400 30+

0.0(0)0(0)0_1 -0.400 30+

Notes:

aThe them control vector is zero at the initiation of the fourth revolution at which time the controller is engaged.

The response to the first computed nonzero them control vector occurs at the beginning of the fifth revolution.

bThe starting seed value of 83298 for T-Matrix initialization and propagation was assumed.

CThe T-Matrix is invafiant.
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Table3. Summaryof the internal limiting study.

Internal limiting Internal limiting Figure

diag (W O) diag (WAo) number Remarks

0 0 13

0 10,000 14

0 1,000

0 100

0 10

0 1

0 0.3162

0 0.1 15

0 0.03162

0 0.01 16

0 0.003162

0 0.001 17

0 0.0001

100 0 18

10 0

1 0

0.I 0

0.01 0 19

0.003162 0

0.001 0 20

0.0003162 0

0.0001 0 21

0.00003162 0

0.00001 0

0.000001 0

Reference

Saturated,

Saturated,

Saturated,

Saturated,

Saturated,

Saturated,

; _2_ ; ?

case with no limiting.
no effective decrease in J.

no effective decrease in J.

no effective decrease in J.

no effective decrease in J.

no effective decrease in J.

on verge of a decrease in J.

Saturated, some decrease in J.

Slow convergence, minimum J by 40 revs.

Slow convergence, minimum J by 20 revs.

Convergence to minimum J by 20 revs.

Nearly the same as the no-limiting case.

Nearly the same as the no-limiting case.

Saturated, no effective decrease in J.

Saturated, no effective decrease in J.

Saturated, no effective decrease in d.

Saturated, no effective decrease in or .

Saturated, on verge of a decrease in J.

Saturated, some decrease in J.

Saturated, significant decrease in J.

Closer to the no-limiting case.

Nearly the same as the no-limiting case.

Nearly the same as the no-limitingease.

Nearly the same as the no-limiting case.

Nearly the s_e as the no-limitingcase.

|

1E

z

E

|

No s: ........5" .... -:
aThe theta control vector is zero at the initiation of the fourth revolution at which time the controller is engaged. The

=

response to the first computed nonzero theta control vector occurs at the beginning of the fifth revoluti0fi.=

bThe starting seed value of 83298 for T-Matrix initialization and propagation was assumed.

CThe T-Matrix was propagated with the propagation scaling coefficient Cp = 0.001 (see sections 2.2.3 and 3.1.3).
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Table 4. Summary of the baseline plant matrix propagation rate study.

T-Matrix propagation

scaling coefficient Cp Figure Remarks

0.0005 24

0.0007

0.0010 25

0.0013

0.0020 26

0.0030

0.0100

Flat and unexciting.

Reasonable, but somewhat too fiat.

Reasonable and representative, selected to be the baseline.

Reasonable, but excursions slightly too high.

Excursions too high.

Excursions too high.

Excursions way too high!

Notes:

aThe them control vector is zero at the initiation of the fourth revolution at which time the controller is engaged. The
response to the first computed nonzero them control vector occurs at the beginning of the fifth revolution.

bThe starting seed value of 83298 for T-Matrix initialization and propagation was assumed.
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Table5. Summaryof the T-Matrix initial estimate study.

T-Matrix initial Adjoint

Controller estimate scaling coefficient

type coefficient CE A Figure

Deterministic 0.001 0 27

Deterministic 0.01 0 : 28

Deterministic 0.1 0 29

Deterministic 0.69897 0

Deterministic 1.0 0 30 =

Deterministic 6.98970 0

Deterministic 10.0 0 31

Cautious 1.0 0.00001 _:::

Cautious 1.0 O._i 32

Cautious 1.0 0.001

Cautious 1.0 0.01 33

Cautious 1.0 0.1 34

Cautious 1.0 1.0

Cautious 1.0 10.0 35

Cautious 1.0 100.0

Dual 1.0 0.0000001

Dual 1.0 0.000001 36, 37

Dual 1.0 0.00001

Dual 1.0 0.0001 38

Dual 1.0 0.001 39

Dual 1.0 0.01 40

Dual 1.0 0.1 41

Dual 1.0 1.0

Notes:
aThe theta control vector is zero at the initiation of the fourth revolution at which

time the controller is engaged. The response to the first computed nonzero theta
control vector occurs at the beginning of the fifth revolution.

bThe starting seed value of 83298 for T-Matr_x_i_tialization and propagation was
assumed.

eThe T-Matrix was propagated with the propagation sealing coefficient Cp =
0.001 (sections 2.2.3 and 3.1.3), with 20% random nonpedodic measurement noise

(C M = 0.200), with no limiting, and for parametric values of the initial T-Matrix
estimate scaling coefficient C E.

Z

B:

[
[
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Table6. Summary of the T-Matrix propagation rate study.

T-Matrix propagation Adjoint

Controller scaling coefficient coefficient

type Cp

Deterministic 0.0010 0

Deterministic 0.0020 0

Deterministic 0.0022 0

Deterministic 0.0024 0

Deterministic 0.0026 0

Deterministic 0.0028 0

Deterministic 0.0030 0

Cautious 0.0026 0.00001

Cautious 0.0026 0.0001

Cautious 0.0026 0.001

Cautious 0.0026 0.01

Cautious 0.0026 0.1

Cautious 0.0026 1.0

Cautious 0.0026 10.0

Cautious 0.0026 100.0

Dual 0.0026 0.0000001

Dual 0.0026 0.000001

Dual 0.0026 0.00001

Dual 0.0026 0.0001

Dual 0.0026 0.001

Dual 0.0026 0.01

Dual 0.0026 0.1

Dual 0.0026 1.0

Figure

42

43

44

45

46

47, 48

49

50

51, 52

53

54

55

Notes:
aThe theta control vector is zero at the initiation of the fourth revolution at which time

the controller is engaged. The response to the first computed nonzero them control vector
occurs at the beginning of the fifth revolution.

bThe startingseedvalue of 83298 forT-Matrix initialization and propagation was assumed.
CThe T-Matrix was propagated with parametric values of the propagation scaling coef-

ficient Cp (sections 2.2.3 and 3.1.3), with 20% random nonperiodic measurement noise
(C M = 0.200), with no limiting, and for the initial T-Matrix estimate scaling coefficient
CE = 0.001.
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Table 7. Summary of the random nonperiodicmeasurement noise levelstudy study.

Measurement noise Adjoint

Controller scaling coefficient coefficient

type CM A Figure

Deterministic

Deterministic

Deterministic

Deterministic

Deterministic

Deterministic

Deterministic

Deterministic

Deterministic

Deterministic

Determinisnc

Deterministic

Deterministic

Deterministic

Cautious

Cautious

Cautious

Cautious

Cautious

Cautious

Cautious

0.0000 0 56

0.1000 0

0.2000 0 57

0.3000 0

0.4000 0 58

0.5000 0

0.6000 0 59

0.7000 0

0.8000 0

0.9000 0 60

1.0000 0

1.1000 0

1.2000 0 61

1.3ooo o

0.2000 0.00001 62

0.2000 0.0001

0.2000 0.001 63

0.2000 0.01 64

0.2000 0.i 65

0.2000 1.0

0.2000 10.0

Dual 0.2000 0.0000001 66

Dual 0.2000 0._!

Dual 0.2_ 0._1 _: ' 67

Dual 0.20oo o.oooi 68
Dual 0.2000 0.001 69

Dual 0.2000 0.01

Dual 0.2000 0.1
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Table7. Concluded.

Measurement noise Adjoint

Controller scaling coefficient coefficient

type C M A Figure

Cautious 1.2000 0.00t_l

Cautious 1.2000 0.001301 70

Cautious 1.2000 0.0001 71

Cautious 1.2000 0.001 72

Cautious 1.2000 0.01

Cautious 1.2000 0.1 73

Cautious 1.2000 1.0

Dual 1.2000 0.000000001

Dual 1.2000 0.(D0(K)_ 1 74

Dual 1.2000 0.0000001

Dual 1.2000 0.000001 75, 76

Dual 1.2000 0.00001 77

Dual 1.2000 0.0001 78

Dual 1.2000 0.001 79

Dual 1.2000 0.01

Notes:
aThe theta control vector is zero at the initiation of the fourth revolution at which

time the controller is engaged. The response to the first computed nonzero theta
control vector occurs at the beginning of the fifth revolution.

bThe starting seed value of 83298 for T-Matrix initialization and propagation was
assumed.

CThe T-Matrix was propagated with the propagation scaling coefficient Cp = 0.001
(sections 2.2.3 and 3.1.3), for parametric values of the random nonperiodic measure-
ment noise coefficient CM, with no limiting, and for the initial T-Mawix estimate
scaling coefficient CE = 0.001.
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Table8. Summary of the random 20-cycle periodic measurement noise level study.

Measurement noise Adjoint

Controller scaling coefficient coe_cient

type U M A Figure

Deterministic 0.0000 0 80

Deterministic 0.1000 0

Deterministic 0.2000 0 81

Deterministic 0.3000 0

Deterministic 0.4000 0 82

Cautious

Cautious

Cautious

Cautious

Cautious

Cautious

Dual

Dual

Dual

Dual

Dual

Dual

0.2000

0.2000

0.2000

0.2000

0.2000

0.2000

0.2000

0.2000

0.2000

O.2000
O.2000

0.2000

0.00001 83

0.0001

0.001 84

0.01 85

0.1 86

1.0

0._1' =

0.000001

0.00001
0.000i

0.001

0.01 -

87

88

89
9O

Notes: .....
aThe theta control vector is zero at the initiation of the fourth revolution at which

time the controller is engaged. The_resi_on_se io_the:_feompui_"nonze_-o flaeta
control vector occurs at the beginning of thff_ _voiution. ::-_: = " _

bTbe starting seed value of 83298 for T-Matrix initialization and propagation was

eThe T:Matrix was propagated with the propagation scaling coefficient Cp = 0.001

(sections 2.2.3 and 3.1.3), for parametric values of the random 20-cycle periodic

measurement noise coefficient C M, with no fimiting, and for the initial T-Matrix

estimate scaling coefficient C E = 0.001.

I[

i
m
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Table 9. Summary of the nonrandom 20-cycle periodic measurement noise level study.

Measurement noise Adjoint

Controller scaling coefficient coefficient

type C M A Figure

Deterministic

Deterministic

Deterministic

Deterministic

Deterministic

Cautious

Cautious

Cautious

Cautious

Cautious

Cautious

0.0000 0 91

0.1000 0

0.2000 0 92

0.3000 0

0.4000 0 93

0.2000 0.00001 94

0.2000 0.0001

0.2000 0.001 95

0.2000 0.01 96

0.2000 0.1 97

0.2000 1.0

Dual 0.2000 0.0000001 98

Dual 0.2000 0.000001

Dual 0.2000 0.00001 99

Dual 0.2000 0.0001 100

Dual 0.2000 0.001 101

Dual 0.2000 0.01

Notes:
aThe theta control vector is zero at the initiation of the fourth revolution at which

time the controller is engaged. The response to the first computed nonzero them
control vector occurs at the beginning of the fifth revolution.

bThe starting seed value of 83298 for T-Matrix initialization and propagation was
assumed.

CThe T-Matrix was propagated with the propagation scaling coefficient Cp - 0.001
(sections 2.2.3 and 3.1.3), for parametric values of the nonrandom 20-cycle periodic
measurement noise coefficient CM, with no limiting, and for the initial T-Matrix
estimate scaling coefficient CE = 0.001.
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